Sentiment Classification of Arabic Documents: Experiments with multi-type features and ensemble algorithms
نویسندگان
چکیده
Document sentiment classification is often processed by applying machine learning techniques, in particular supervised learning which consists basically of two major steps: feature extraction and training the learning model. In the literature, most existing researches rely on n-grams as selected features, and on a simple basic classifier as learning model. In the context of our work, we try to improve document classification findings in Arabic sentiment analysis by combining different types of features such as opinion and discourse features; and by proposing an ensemble-based classifier to investigate its contribution in Arabic sentiment classification. Obtained results attained 85.06% in terms of macro-averaged Fmeasure, and showed that discourse features have moderately improved Fmeasure by approximately 3% or 4%.
منابع مشابه
Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملEnsemble of Classification Algorithms for Subjectivity and Sentiment Analysis of Arabic Customers' Reviews
Sentiment Analysis is a very challenging and important task that contains natural language processing, web mining and machine learning. Up to date, few researches have been conducted on sentiment classification for Arabic languages due to the lack of resources for managing sentiments or opinions such as senti-lexicons and opinion corpora. The main obstacle in Arabic sentiment analysis is that p...
متن کامل